

0040-4020(94)E0190-5

Ligand Exchange Reaction of Sulfoxides in Organic Synthesis: A Novel Method for Generation of Magnesium Enolates and Its Application to Synthesis of α -Halocarboxylic Acid Derivatives **and a-Haloaldehydes**

Tsuyoshi Satoh, Yasushi Kitoh, Ken-i&i Onda, Koji Takano, and Koji Yamakawa*

Faculty of Pharmaceutical Sciences, Science University of Tokyo, Ichigaya-funagawara-machi, Shinjuku-ku, Tokyo 162, Japan

Abstract: A new method for synthesis of a-halo(C1, F)carboxylic acid derivatives and a-haloaldehydes is described. a-Halo-a-suljkyl carboxylic acid, esters, and a-halo-a-sulfinyl aldehydes were easily prepared **from aryl** *1 haloalkyl sulfoxides and alkyl chloroformate and ethyl formate, respectively, in good yields. a-Chloro-asulfinyl amides were synthesized from (p-tolylthio)acetic acid. Ligand exchange reaction of the sulfinyl group of these acids, esters, amides,* and *aldehydes with ethylmagnesium bromide gave the magnesium enolates, which were treated with water to* give *a-halocarboxylic acid derivatives and a-chloroaldehydes in good yields. The magnesium enolates derived from the* α *-chloro-* α *-sulfinyl acid derivatives were trapped with carbonyl compounds to afford the adducts, which were transformed to* α *,* β *-epoxy carboxylic acid derivatives. Thermal elimination of the sulfinyl group in the* α *-halo-* α *-sulfinyl acid derivatives and the* α *-halo-* α *-sulfinyl aldehydes gave* α *-halo-* α *,* β unsaturated carboxylic acid derivatives and α-halo-α, β-unsaturated aldehydes in high yields.

 α -Halocarboxylic acids and their derivatives,¹ and α -haloaldehydes,² including α , β -unsaturated ones, are quite important compounds in organic synthesis. Usually, they are synthesized from the corresponding carboxylic acids and aldehydes by direct halogenation, 1.2 mainly bromination. Direct chlorination of carboxylic acids and aldehydes is less common, and direct fluorination is quite difficult. There are some other methods for preparing a-halocarboxylic acids and a-haloaldehydes; however, methods involving a carbon-carbon bondforming reaction are limited.

In previous papers, we reported a new method for synthesizing α -haloketones from aldehydes and aryl 1haloalkyl sulfoxides via the ligand exchange reaction of the sulfinyl group of α -halo α -sulfinylketones with alkylmetals.3 In continuation of our studies on use of the ligand exchange reaction of sulfoxides in organic synthesis, here we report in detail a novel method for generation of magnesium enolates of α -halocarboxylic acid derivatives and α -chloroaldehydes, and its application to synthesis of several α -halocarboxylic acids and derivatives $(4, 6, \text{ and } 7)$ and α -haloaldehydes $(9 \text{ and } 10)$ (Scheme 1).

RESULTS AND DISCUSSION

Synthesis of α -Halo α -Sulfinyl Carboxylic Acid Derivatives.

 α -Chloro α -sulfinyl amides 13 were synthesized from (p-tolylthio)acetic acid 1 as follows (Table 1). The acid **1 was treated** with thionyl chloride to afford the acid chloride, which was reacted with excess amines to give the desired amides **11** in over 90% yields. The amides **11 were** chlorinated with NCS in CC14 to give a-chloro a-(p-tolylthio)amides. Without purification, the sulfides were oxidized to the sulfoxides **12** in moderate to good overall yields. Alkylation of 12 was carried out in the usual way with primary iodoalkanes to give the desired 13 in high yields.

Table 1. Synthesis of α -Chloro α -Sulfinylamides

a) Isolated yield. b) Ammonia in water (29%) was used.

Synthesis of α -chloro- and α -fluoro α -sulfinylesters is shown in Table 2. The procedure is reported for the synthesis of 14a (entries 1 and 2) as an example. 1-Chloroundecyl p-tolyl sulfoxide⁵ was treated with lithium diisopropylamide (LDA) in THF at -78 °C followed by ethyl chloroformate. This reaction gave the desired 14a in 43% yield and a significant amount of N , N -diisopropylsulfinamide as a by-product. To overcome this problem, a more hindered base, lithium 2,2,6,6,-tetramethylpiperidide (LTMP), was used in this reaction. Fortunately, the reaction worked well to afford 14a in 73% yield without the sulfinamide. Isobutyl chloroformate showed the same reactivity in the reaction (entry 3).

Table 2. Synthesis of α -Halo α -Sulfinylesters

a) The reactions were carried out in THF at -78°C. b) The reactions were carried out at -100°C

In the case of the reaction with 1-fluoroalkyl phenyl sulfoxide⁶ with ethyl chloroformate, the reaction was carried out at -100 °C (entries 6 and 7). When this reaction is carried out at -78 °C, a much lower yield of 14 is obtained.

 α -Chloro α -sulfinylester 14 could be synthesized in another way. For example, as shown in Scheme 2, alkylation of p-toluenethiol with ethyl 2-bromopropionate gave ethyl 2- $(p$ -tolylthio)propionate, which was chlorinated, then oxidized to give **14g** in good overall yield. α -Chloro α -sulfinylcarboxylic acid **15** was easily derived from the ester 14g by basic hydrolysis.

Synthesis of α-Halocarboxylic Acids and Their Derivatives from α-Halo α-Sulfinyl Carboxylic Acid Derivatives by Ethylmagnesium Bromide-Promoted Desulfinylation and Trapping of **the Magnesium Enolate Intermediates with Carbonyl Compounds.**

Ekolatcs are one of the most fundamental and versatile intermediates in organic synthesis with carbonyl compounds. The enolates of carbonyl compounds are now easily prepared using bases containing various metals (Li, Mg, Zn, B, Al, etc.).7

In our recent papers,³ we reported a novel method for generation of magnesium enolates from α -halo α sulfinyl ketones via the ligand exchange reaction of sulfoxides⁸ with alkylmetals. We presumed that the ligand exchange reaction would be applicable to α -halo α -sulfinyl carboxylic acid derivatives. If this reaction worked, a new method for generation of magnesium enolates of α -halo carboxylic acids could be achieved.⁹

First of all, α -chloro α -sulfinylester **14a** was treated with two equivalents of EtMgBr in THF at -78 °C for 10 min (Scheme 3). Quite clean reaction took place and the desired α -chloroester **16** was obtained in 91% yield together with ethyl p-tolyl sulfoxide 17 (94%). Similarly, α -chloro α -sulfinyl amide 13a gave the desulfinylated α -chloroamide 18 in slightly lower yield (78%) compared with the ester 16.

The results for EtMgBr-promoted desulfinylation of α -halo- α -sulfinyl carboxylic acid derivatives are summarized in Table 3. As shown in the table, this ligand exchange reaction takes place with both amides and esters in good yields. Even the carboxylic acid **15 rcactcd** with EtMgBr to afford the desulfinylated product, **2** chloropropionic acid 27 in moderate yield (entry 11). In the case of α -sulfinylamides derived from primary amines and ammonia (13b-13d), three equivalents of EtMgBr were required to complete the reaction (entries 2-4). These results indicate that at least one equivalent of EtMgBr was consumed by the acidic hydrogen on the nitrogen.

Esters usually gave better yields than amides (entries 5 and 6); however, when a benzyl group is present on the α -carbon, the yields were lowered (entries 7 and 8). α -Fluoro α -sulfinylesters reacted with EtMgBr to give the desired α -fluoroesters 25 and 26 in moderate yields.

As described above, the ligand exchange reaction of the sulfinyl group of α -halo α -sulfinyl ketones afforded the magnesium enolates.³ Similarly, the ligand exchange reaction of α -halo α -sulfinyl carboxylic acid derivatives must give the magnesium enolate **28**. Thus, after the treatment of α -chloro α -sulfinyl ester **14a** with EtMgBr, slight excess cyclohexanone was added to the reaction mixture (Scheme 4). This reaction gave the desired adduct 29a in 80% yield. The magnesium enolate of **14b** reacted with aldehyde to give **29b** in somewhat lower yield.

O TolS-C(X)COY					EtMgBr	R-CHCOY X	
Entry		R	$\pmb{\mathsf{x}}$	Y	EtMgBr (equiv.)	a-Halocarboxylic Acid Derivative (Yield/%)	
1	13a	$CH_3CH_2)_2$	a	N	1.3	CH ₃ (CH ₂) ₂ -CHCO-N 18 (78)	
$\boldsymbol{2}$	13 _b	$CH_3CH_2)_2$	CI	$NH(CH2)5CH3$	3.0	$CH_3CH_2)_2$ – CHCO-NH(CH ₂) ₅ CH ₃ 19(73)	
3	13c	$CH_3CH_2)_2$	a	$NHCH2$ Ph	3.0	$CH_3(CH_2)_2$ -CHCO-NHCH ₂ Ph CI $20(80)$	
4	13d	$CH_3CH_2)_9$	a	NH ₂	3.0	$CH_3CH_2)_9$ -CHCO-NH ₂ $CI_{21(78)}$	
5	14a	$CH3(CH2)9$	α	OCH ₂ CH ₃	2.0	$CH3(CH2)9$ -CHCOOCH ₂ CH ₃ CI 16 (91)	
6	14b	$CH3(CH2)9$	a	O'Bu	2.0	$CH_3(CH_2)_9$ - CHCOOCH ₂ CH(CH ₃) ₂ ĊI 22 (93)	
7	14c	PhCH ₂	a	OCH ₂ CH ₃	2.0	PhCH ₂ -CHCOOCH ₂ CH ₃ CI ₂₃₍₇₂₎ 23(72)	
8	14d	PhCH ₂	C1	O ['] Bu	2.0	PhCH ₂ -CHCOOCH ₂ CH(CH ₃) ₂ CI 24 (67) 24(67)	
9	14e	CH_3CH_2) ₉	F	OCH ₂ CH ₃	1.5	$CH_3(CH_2)_9$ -CHCOOCH ₂ CH ₃ Ė 25(60)	
10	14f	PhCH ₂	F	OCH ₂ CH ₃	1.5	PhCH ₂ -CHCOOCH ₂ CH ₃ F $\frac{26}{5}$ 26(58)	
11	15	CH ₃	α	н	2.5	CH ₃ -CHCOOH ĊI 27(67)	

Table 3. Ethylmagnesium Bromide Promoted Desulfinylation of a-Halo-a-Sulfiiyl Amides, Esters, and Acids

This reaction was applied to the α -fluoro α -sulfinyl ester 14e with aldehyde. However, the magnesium enolate generated from 14e **gave** not the desired adduct but only desulfinylated product 25.

Next, this reaction was applied to the a-chloro a-sulfinylamides. The **results are** shown in Table 4. As shown in the table, the magnesium enolates from α -chloro α -sulfinylamides 13 gave 60-80% yield of the adduct, except for two examples (entries 2 and 5); in these cases, benzophenone is a sterically hindered ketone, and benzyl ethyl ketone is very easily enolizable ketone.

a) Isolated yield. b) Desulfinylated α -chloroamide18 was obtained as a main product after quenching the reaction with sat. aq. $NH₄Cl.$

As shown in Scheme 4 and Table 4, the adducts, α -chloro α -hydroxyesters and amides, are important intermediates for Darzens-type α, β -epoxy esters and amides. ¹⁰ Especially, as α, β -epoxy amide is rare, we tried to make it from the adduct 3Oa-3Oc (Scheme 5).

Treatment of 30a in alcohol with aqueous KOH did not give the desired 31a. Thus, more highly basic conditions, potassium tert-butoxide in tert-butanol, was applied to 30a, which gave the desired α, β -epoxy amide 31a in 84% yield. The same conditions were applied to 30b and 30c to give 31b and 31c in good yields. The epoxyamides 31b and 31c have two chiral centers; however, both were found to be single isomers. The stereochemistry of 31b **and** 31c was determined by NOBSY spectrum, as depicted in Scheme 5. This fact indicates that the reaction of the magnesium enolates with carbonyl compounds was highly stereoselective.

The trapping of the magnesium enolates derived from α -chloro α -sulfinyl acid 15 with carbonyl compounds showed somewhat different results compared with the reaction with the esters and amides (Table 5).

Table 5. Synthesis of α , β -Epoxy Carboxylic Acids from 15 and Carbonyl Compounds

a) Isolated yield.

The acid 15 was treated with 2.2 equiv. of EtMgBr followed by benzaldehyde. The product was extracted with 10% NaOH for isolation of the acid. Acidification of the solution and extraction with ether followed by chromatographic purification gave the α , β -epoxy acid 32a in 68% yield. Obviously, the magnesium enolate generated from 15 reacted with benzaldehyde and the adduct was epoxidized by the basic treatment. The α . Bepoxy acids were obtained from both aldehydes and ketones. Even benzophenone reacted with the magnesium enolate to afford 3Zd in good yield.

Sulfoxides are of value to synthesis of olefins via thermal elimination.¹¹ As α -halo α , β -unsaturated carboxylic acid derivatives are quite important compounds in organic synthesis, we tried to make these compounds from the α -halo α -sulfinylamides and esters (Scheme 6).

Scheme 6

First, α -chloro α -sulfinylamide **13a** and ester **14b** were heated in refluxing toluene. Somewhat surprisingly, the thermal elimination totally completed within 10 min to give 4a and 4b in good yields. Trost reported 6- 14 h heating in refluxing toluene for completion of the thermal elimination of α -sulfinyl esters to α , β -unsaturated esters.^{11a} From this fact, it is deduced that the elimination is greatly facilitated by the presence of α -halogen. Similarly, α -fluoro α -sulfinylesters 14e and 14f gave α -fluoro α , β -unsaturated esters 4c and 4d in good yields by heating in refluxing benzene for 25 min. All α -halo α , β -unsaturated amides and esters (4a-4d) have Zstereochemistry, which were determined from ${}^{1}H$ NMR spectra (the chemical shift and coupling constants of the vinylic hydrogen).¹² The method described here offers a good way for a synthesis of α -halo α, β -unsaturated carboxylic acid derivatives.

Synthesis of α-Halo α-Sulfinyl Aldehydes and Their Transformation to α-Haloaldehydes via **the Ligand Exchange Reaction and Thermal Elimination of the Sulfiiyl Group.**

As described above, we have achieved synthesis of α -halo carboxylic esters from aryl 1-haloalkyl sulfoxides 2 and alkyl chloroformate (see Scheme 1). Accordingly, we presumed that the reaction could be extended to a new method for synthesis of α -haloaldehydes.

Similar to the synthesis of α -halo α -sulfinylesters, the carbanion of 2 was treated with methyl formate to give the desired α -halo α -sulfinyl aldehyde 8 in good yield. Four representative examples are listed in Table 6. The yields for the synthesis of 8 are usually much better compared with those for the synthesis of α -halo esters (see Table 2).

Next, the ligand exchange reaction of 8 with EtMgBr was carried out. A solution of 8 was added to a solution of EtMgBr in THF at -78 °C. This reaction worked well with α -chloro α -sulfinylaldehydes **8a** and **8b** to afford 9a and **9b** in good yield; however, a-fluoro compound SC **and 8d gave only a complex mixture (Table 7).**

Ar\$-CHX	1) LDA/THF,-60°C		ArŚ-C(X)CHO		
2	СH ₂ R 2) HCO ₂ Me		CH ₂ R 8		
	2		8		
Ar	R	x	Yield/% [*]		
Tol	Ph	a	8a 73		
Tol	$CH_3CH_2)_8$	a	8b 91		
Ph	Ph	F	- 82 8с		
Ph	$CH_3CH_2)_8$	F	8d 95		
	a) Isolated vield.				

Table 6. Synthesis of α -Halo α -Sulfinyl Aldehydes 8

Table 7. Synthesis of α -Chloroaldehydes 9 and α , β -Unsaturated Aldehydes 10 from 8

		ArS-C(X)CHO ĊН,R 8	EtMgBr RCH ₂ CH(CI)CHO 9 heating R сно 10		
		8		9	10
	Ar	R	χ	$(Yield/\%)^a$	$(Yield/\%)^a$
8a Tol		Ph	a	9a (89)	10a $(57)^{c}$
8b Tol		$CH_3CH_2)_8$	a	9b(66)	10b $(85)^{c}$
8с	Ph	Ph	F	$_{-}$ b)	10c $(78)^{c}$
8d	Ph	$CH_3CH_2)_8$	F	$_b)$	10d $(90)^{c}$

a) Isolated yield. b) **A** complex mixture c) Heating in refluxing benzene for 15 min.

The trapping of the magnesium enolate intermediate of the reaction of 8a and 8b with carbonyl compounds was tried, but this reaction gave not the desired adducts but the desulfinylated 9a and **9b.**

Finally, thermal elimination of the sulfinyl group of 8 was carried out in refluxing benzene. Similar to the α halo α -sulfinylesters and amides, the elimination proceeded quite smoothly to give the α -halo α, β -unsaturated aldehydes **10** in good yield.

In conclusion, we have developed a new method for the generation of magnesium enolates of α -halo carboxylic acid derivatives and α -chloroaldehydes via the ligand exchange reaction of α -halosulfoxides with EtMgBr. These procedures described above offer us a good way for the synthesis of various kinds of α -halo carboxylic acid derivatives and α -haloaldehydes including α, β -unsaturated ones.

EXPERIMENTAL SECTION

All melting points are uncorrected. ¹H NMR spectra were measured in a CDCl₃ solution with a JEOL FX-100 spectrometer. Electron-impact mass spectra (MS) were obtained at **70** eV by direct insertion. Silica gel BW-127 ZH (Fuji-Devison) containing 2% fluorescence reagent 254 and a quartz column were used for column chromatography and the products having UV absorption were detected by UV irradiation. In experiments requiring a dry solvent, THE was distilled from diphenylketyl, diisopropylamine, 2,2,6,6-tetramethylpiperidine, benzene, and toluene were dried over CaH2 and distilled.

N-[2-@-Tolylthio)ethanoyl]piperidine (lla). In a dry flask, thioacetic acid **1** (1.63 g; 9.1 mmol) was reacted with thionyl chloride (4 ml; 45.4 mmol) at 80 °C for 1.5 h. The excess thionyl chloride was evaporated under vacuum, and the residue was diluted with dry benzene (10 ml). The solution was cooled to 0 "C and piperidine (2.7 ml; 27.2 mmol) was added dropwise with stirring. After 5 min, the reaction mixture was diluted with AcOEt and the solution was washed with water, dried, and concentrated. The residue was purified by silica gel column chromatography to afford **lla** (2.22 g; 98%) as a colorless oil. IR (neat) 1640 (CO) cm-l; 1_H NMR 8 1.3-1.7 (6H, m), 2.30 (3H, s), 3.3-3.6 (4H, m), 3.68 (2H, s), 7.0-7.4 (4H, m); MS m/z (%) 249 (M⁺, 57), 216 (4), 126 (32), 112 (100). Found: m/z 249.1188. Calcd for C₁₄H₁₉NOS: M, 249.1186.

Amides (llb-lld). These amides were synthesized as described for **lla. llb:** Colorless oil; IR (neat) 3300 (NH), 1645 (CO) cm⁻¹; ¹H NMR δ 0.85 (3H, t, J=7 Hz), 1.0-1.6 (8H, m), 2.30 (3H, s), 3.22 (2H, q, J=6 Hz), 3.58 (2H, s), 6.78 (lH, bs), 7.0-7.3 (4H, m); MS *m/z (%)* 265 (M+, 64), 138 (100). Found: *m/z* 265.1491. Calcd for C₁₅H₂₃NOS: M, 256.1499. **11c**: Colorless crystals; mp 80.5-81.5 °C (AcOEt-hexane); IR (KBr) 3340, 3300 (NH), 1645 (CO) cm⁻¹; ¹H NMR δ 2.30 (3H, s), 3.62 (2H, s), 4.39 (2H, d, J=6 Hz), 6.9-7.3 (5H, m); MS m/z (%) 271 (M+, 45), 148 (100). Found: C, 70.67; H, 6.24; N, 5.03; S, 11.67%. Calcd for Clfll7NOS: C, 70.82; H, 6.31; N, 5.61; S, 11.81%. **lld:** Colorless crystals; mp 119-121 "C (AcOEthexane); IR (KBr) 3375, 3200 (NH), 1675 (CO) cm⁻¹; ¹H NMR 8 2.30 (3H, s), 3.54 (2H, s) 6.32, 6.64 (each lH, bs), 7.0-7.3 (4H, m); MS m/z (%) 181 (M+, 100) 137 (95). Found: C, 59.58; H, 6.07; N, 7.65; S, 17.51%. Calcd for C₉H₁₁NOS: C, 59.64; H, 6.12; N, 7.73; S, 17.69%.

N-[2-Chloro-2-(p-tolylsulfinyl)ethanoyl]piperidine (12a). N-Chlorosuccinimide (NCS; 660 mg; 4.9 mmol) was added to a solution of **lla (1.12 g; 4.5 mmol)** in 15 ml of **CC4. The** suspension was stirred at room temperature for 1 h. The suspension was filtered and the filtrate was evaporated to give a residue. The residue was dissolved in 15 ml of CH_2Cl_2 and cooled to -60 °C. 3-Chloroperbenzoic acid (5.8 mmol) was added to the solution and the reaction mixture was stirred at -60 to -50 °C for 1 h. The reaction mixture was diluted with CH₂Cl₂ and the solution was washed successively with 10% NaOH, H₂O, and sat. aq. NH₄Cl. The product was purified by silica gel column chromatography to afford 1.12 g (83%) of 12a as colorless amorphous (about 1:l diastereomeric mixture). IR (KBr) 1650 (CO), 1090, 1065 (SO) cm-t; 1H NMR 6 l.O-1.8 (6H, m), 2.41, 2.43 (each 1.5H, s), 3.1-3.8 (4H, m), 4.98, 5.09 (each 0.5H, s), 7.2-7.8 (4H, m); MS m/z (%) 299 (M⁺, 20), 160 (54), 132 (88), 84 (100). Found: m/z 299.0753. Calcd for C₁₄H₁₈ClNO₂S: M, 299.0746.

a-Chloro a-Sulfinyl Amides (12b-12d). These amides were synthesized as described for **12a. 12b:** Colorless oil (about 1:1 diastereomeric mixture), IR (neat) 3320 (NH), 1670 (CO), 1090 , 1055 (SO) cm⁻¹; ¹H NMR 6 0.88 (3H, t, 5=7 Hz), 1.0-1.8 (8H, m), 2.42 (3H, s), 3.0-3.4 (4H, m), 4.89, 5.23 (each 0.5H, s), 6.42, 6.60 (each 0.5H, bs), 7.1-7.6 (4H, m). 12c: Colorless amorphous (about 3:1 diastereomeric mixture); IR (KBr) 3300 (NH), 1665 (CO), 1090, 1070 (SO) cm- l; lH NMR 6 2.38 (2.3H, s), 2.40 (0.7H. s), 4.30 (1.4H, d, J=6 Hz), 4.45 (0.6H, dd, J=l, 6 Hz), 4.96 (0.3H, s), 5.25 (0.7H, s), 6.86 (lH, bs), 7.0-7.6 (9H, m); MS *m/z* (%) 321 (M+, 19), 139 (100). Found: *m/z* 321.0574. Calcd for C₁₆H₁₆ClNO₂S: M, 321.0588. **12d**: Colorless amorphous (about 1: 1 diastereomeric mixture); IR (KBr) 3400, 3250 (NH), 1670 (CO), 1090, 1055 (SO) cm⁻¹; ¹H NMR (CD₃OD-CDCl₃) δ 2.43 (3H, s), 5.01 (0.5H, s), 5.27 (0.5H, s), 7.2-7.7 (4H, m); MS m/z $(\%)$ 231 (M⁺, 7), 155 (5), 139 (100). Found: m/z 231.0130. Calcd for C₉H₁₀ClNO₂S: M, 231.1290.

 $N-$ [2-Chloro-2- $(p$ -tolylsulfinyl)pentanoyl]piperidine $(13a)$. A solution of 12a $(600 \text{ mg}; 2 \text{ mmol})$ in 5 ml of THF was added dropwise with stirring to a solution of LDA (2.4 mmol) at -60 $^{\circ}$ C. After 10 min, iodopropane (4 mmol) and HMPA (4 mmol) were added. The temperature of the reaction mixture was allowed to warm to 0 $^{\circ}$ C for 3 h. The reaction was quenched with sat. aq. NH₄Cl and the whole was extracted with AcOEt. The product was purified by silica gel column chromatography to give 660 mg (99%) of **13a** as a colorless oil; IR (neat) 1630 (CO), 1085, 1060 (SO) cm⁻¹; ¹H NMR δ 1.03 (3H, t, J=7 Hz), 1.2-2.8 (10H, m),

2.38 (3H, s), 3.1-3.9 (4H, m), 7.1-7.8 (4H, m); MS m/z (%) 341 (M+, 0.6), 289 (1.5), 202 (88), 172 (85), 139 (100). Found: m/z 341.1234. Calcd for C₁₇H₂₄ClNO₂S: M, 341.1215.

a-Chloro a-Sulfinylamides (13b-13d). These amides were synthesized as described for **13a. 13b:** Colorless oil; IR (neat) 3360 (NH), 1670 (CO), 1095, 1070 (SO) cm⁻¹; ¹H NMR 8 0.7-1.1 (6H, m), 1.1-1.7 $(12H, m)$, 2.41 (3H, s), 3.21 (2H, t, J=7 Hz), 7.1-7.8 (4H, m); MS m/z (%) 357 (M+, 0.8), 337 (4), 218 (63). 43 (100). Found: m/z 357.1524. Calcd for $C_{18}H_{28}CNO₂S$: M, 357.1527. 13 c : Colorless amorphous; IR (KBr) 3370 (NH), 1675 (CO), 1095, 1070 (SO) cm⁻¹; ¹H NMR δ 0.96 (3H, t, J=7 Hz), 1.2-2.0 (4H, m), 2.40 $(3H, s)$, 4.35 $(2H, m)$, 6.8-7.6 $(9H, m)$; MS m/z (%) 363 $(M⁺, 0.6)$, 278 (0.5) , 224 (16) , 140 (53) , 91 (100) . Found: m/z 363.1064. Calcd for Ct9H22ClN02S: M, 363.1059. **13d:** Colorless oil; IR (neat) 3320 (NH), 1690 (CO), 1095, 1065 (SO) cm⁻¹; ¹H NMR 8 0.87 (3H, t, J=7 Hz), 1.0-1.8 (18H, m), 2.40 (3H, s), 5.95, 6.33 (each 1H. bs). 7.1-7.7 (4H, m); MS m/z (%) 371 (M+, O.l), 271 (O.l), 196 (28), 139 (68), 106 (100). Found: m/z 371.1663. Calcd for C₁₉H₃₀ClNO₂S: M, 371.1683.

Ethyl 2-Chloro-2-(p-tolylsulfinyl)dodecanoate (14a). A solution of n-BuLi (0.38 mmol) in hexane was added to a solution of 2,2,6,6-tetramethylpiperidine (0.38 mmol) in 4 ml of THF at 0 °C under Ar atmosphere. The solution was stirred at 0° C for 15 min and then cooled to -78 $^{\circ}$ C. To the solution was added a solution of 1-chloroundecyl p-tolyl sulfoxide (113 mg; 0.34 mmol) in 1 ml of THF. chloroformate (0.48 mmol) was added through a syringe. After 15 min, ethyl The reaction mixture was stirred at -78 °C for 15 min and then quenched with sat. aq. NH₄Cl. The whole was extracted with AcOEt and the organic layer was washed successively with 5% HCl, sat. NaHCO₃, and sat. NH₄Cl. The product was purified by silica gel column chromatography to give 14a (107 mg; 73%) as a colorless oil. IR (neat) 1750, 1730 (CO), 1095, 1070 (SO) cm⁻¹; ¹H NMR δ 0.87 (3H, t, J=7 Hz), 1.13 (3H, t, J=7 Hz), 1.0-2.1 (18H, m), 2.41 (3H, s), 3.98 (2H, q, J=7 Hz), 6.9-7.7 (4H, m); MS m/z (%) 400 (M+, O.l), 364 (1.5), 309 (l), 140 (100). Found: *m/z* 400.1840. Calcd for $C_{21}H_{33}ClO_3S$: M, 400.1843.

Esters (14b-149. These esters were synthesized in a similar way as described for **14a. 14b:** Colorless oil (about 1:l diastereomeric mixture); IR (neat) 1755, 1735 (CO), 1100, 1075 (SO) cm-t; tH NMR 6 0.7-1.0 (9H, m), 1.0-2.2 (19H, m), 2.40 (3H, s), 3.5-4.0 (2H, m), 7.1-7.7 (4H, m); MS m/z (%) 428 (M+, O.l), 289 (1.5), 57 (100). Found: *m/z* 428.2155. Calcd for C23H37Cl03S: M, 428.2149. 14~: Colorless oil; IR (neat) 1750, 1725 (CO), 1090, 1070 (SO) cm⁻¹; ¹H NMR δ 1.05 (3H, t, J=7 Hz), 2.41 (3H, s), 3.36 (1H, d, J=13 Hz), 3.86 (1H, d, J=13 Hz), 3.8-4.0 (2H, m), 7.1-7.7 (9H, m); MS *m/z* (%) 350 (M⁺, 3), 278 (4), 140 (100). Found: *m/z* 350.0746. Calcd for C₁₈H₁₉ClO₃S: M, 350.0742. **14d:** Colorless oil; IR (neat) 1750, 1730 (CO), 1100, 1070 (SO) cm-l; tH NMR 6 0.74, 0.77 (each 3H, d, J=6 Hz), 1.71 (lH, septet, J=6 Hz), 2.39 (3H, s), 3.3-4.1 (4H, m), 7.1-7.7 (9H, m); MS *m/z (%)* 378 (M+, 4). 238 (44), 182 (100). Found: *m/z* 378.1051. Calcd for C₂₀H₂₃ClO₃S: M, 378.1054. 14e: Colorless oil; IR (neat) 1760, 1725 (CO), 1090, 1060 (SO) cm⁻¹; ¹H NMR $\tilde{\delta}$ 0.88 (3H, t, J=7 Hz), 1.13 (3H, t, J=7 Hz), 1.1-2.6 (18H, m), 4.08 (2H, q, J=7 Hz), 7.2-7.7 (5H, m); MS m/z (%) 370 (M⁺, 0.1), 298 (2), 126 (100). Found: m/z 370.1976. Calcd for C₂₀H₃₁FO₃S: M, 370.1976. 14f: Colorless oil (about 1:1 diastereomeric mixture); IR (neat) 1765, 1730 (CO), 1090, 1060 (SO) cm⁻¹; ¹H NMR δ 0.93 (2H, t, J=7 Hz), 1.05 (1H, t, J=7 Hz), 3.3-4.3 (4H, m), 7.1-7.8 (10H, m); MS m/z (%) 320 (M⁺, 25), 194 (100). Found: m/z 320.0873. Calcd for C₁₇H₁₇FO₃S: M, 320.0880.

2-Chloro-2-(p-tolylsulfinyl)propionic **Acid** (15). Ethyl ester 14g was synthesized from ethyl 2 bromopropionate and p-toluenethiol in a similar way as described for 12. 14g: Colorless oil; IR (neat) 1755 (CO), 1100 , 1065 (SO) cm⁻¹. To a solution of $14g$ (907 mg; 3.3 mmol) in 12 ml of methanol was added Claisen's alkali¹³ (1.6 ml) and the reaction mixture was stirred and heated at 70 °C for 1 h. After cooling, 30 ml of water was added to the reaction mixture and acidified with 10% HCl. The whole mixture was extracted with AcOEt-benzene. The organic layer was washed with water, dried and evaporated to give crystals, which were purified by recrystallization to give 749 mg (92%) of **15** as colorless crystals. Mp 143.5-145 'C, IR (KBr) 1750 (CO) , 1085, 1030, 1015 (SO) cm⁻¹; ¹H NMR δ 1.76 (3H, s), 2.42 (3H, s), 7.2-7.7 (4H, m).

Ethyl 2-Chlorododecanoate (16). A solution of 14a (124 mg; 0.31 mmol) in THF was added dropwise with stirring to a solution of EtMgBr (0.62 mmol) in THF at -78 °C under Ar atmosphere. The reaction mixture was stirred at -78 °C for 10 min and then quenched with sat. aq. NH₄Cl. The whole was extracted with AcOEt and the organic layer was washed once with sat. aq. $NH₄Cl$ and dried over MgSO₄. The product was purified by silica gel column chromatography to give 16 (74 mg; 91%) as a colorless oil. IR (neat) 1750 (CO) cm⁻¹; ¹H NMR 6 0.88 (3H, t, J=7 Hz), 1.1-1.6 (16H, m), 1.30 (3H. t, J=7 Hz), 1.93 (2H, m), 4.22 (2H, q. 3=7 Hz), 4.24 (1H, t, J=7 Hz); MS m/z (%) 262 (M⁺, 5), 227 (6), 122 (100). Found: m/z 262.1703. Calcd for $C_{14}H_{27}ClO_2$: M, 262.1698.

N-(2-Chloropentanoyl)piperidine (18). Colorless oil; IR (neat) 1655 (CO) cm⁻¹; ¹H NMR 8 0.95 (3H, t, J=7 Hz). 1.2-1.8 (8H, m), 1.8-2.2 (2H. m), 3.2-3.8 (4H, m), 4.44 (lH, t, J=7 Hz); MS m/r (%) 203 (M⁺, 7), 168 (68), 161 (70), 126 (63), 112 (100). Found: m/z 203.1069. Calcd for C10H₁₈ClNO: M, 203.1075.

N-Hexyl-2-chloropentanamide (19). Colorless oil; IR (neat) 3310 (NH), 1655 (CC) cm-t; tH NMR 6 0.89, 0.95 (each 3H, t, J=7 Hz), 1.1-1.7 (10H, m), 1.8-2.2 (2H, m), 3.26 (2H, q, J=7 Hz), 4.34 (1H, dd, J=8, 4 Hz), 6.58 (1H, bs); MS m/z (%) 219 (M⁺, 8), 177 (53), 128 (51), 43 (100). Found: m/z 219.1373. Calcd for C₁₁H₂₂ClNO: M, 219.1388.

N-Benzyl-2-chloropentanamide (20). Colorless oil; IR (neat) 3310 (NH), 1660 (CO) cm-t; tH NMR 6 0.94 (3H, t, J=7 Hz), 1.2-1.7 (2H, m), 1.8-2.3 (2H, m), 4.38 (lH, dd, J=7, 4 Hz), 4.44 (2H, d, J=6 Hz), 6.86 (lH, bs), 7.28 (5H. m); MS m/z (%) 225 (M+, 18), 190 (62). 91 (100). Found: m/z 225.0911. Calcd for $C_{12}H_{16}C$ INO: M, 225.0918.

2-Chlorododecanamide (21). Colorless crystals; mp 77.5-78 °C (AcOEt-hexane); IR (KBr) 3420, 3200 (NH), 1655 (CO) cm⁻¹; ¹H NMR 8 0.88 (3H, t, J=7 Hz), 1.1-1.6 (12H, m), 1.8-2.2 (2H, m), 4.30 (1H, dd, J=8,4 Hz). 6.08, 6.28 (each lH, bs); MS *m/z (96)* **233** (M+, l), 198 (20), 93 (100). Found: C, 61.42; H, 10.41; N, 6.12%. Calcd. for C₁₂H₂₄ClNO: C, 61.65; H, 10.35; N, 5.99%.

Isobutyl 2-Chlorododecanoate (22). Colorless oil; IR (neat) 1750 (CO) cm⁻¹; ¹H NMR δ 0.87 (3H, t, J=7 Hz), 0.94 (6H, d, J=7 Hz), 1.1-1.5 (17H, m), 1.7-2.2 (2H, m), 3.94 (2H, d, J=7 Hz), 4.15 (lH, t, J=6 Hz); MS m/z (%) 290 (M⁺, 0.3), 262 (0.3), 246 (1), 57 (100). Found: m/z 290.1999. Calcd for C₁₆H₃₁ClO₂: M, 290.2010.

Ethyl 2-Chloro-3-phenylpropionate (23). Colorless oil; IR (neat) 1750 (CO) cm⁻¹; ¹H NMR δ 1.20 $(3H, t, J=7 Hz)$, 3.25 (2H, m), 4.15 (2H, q, $J=7 Hz$), 4.41 (1H, t, $J=6 Hz$), 7.22 (5H, m); MS m/z (%) 210 ([M-2]+, 2), 177 (56), 176 (58), 131 (100).

Isohutyl 2-Chloro-3-phenylpropionate (24). Colorless oil; IR (neat) 1755 (CO) cm-t; tH NMR 6 0.86 (6H, $d, J=7$ Hz), 1.89 (1H, m), 3.26 (2H, m), 3.88 (2H, d, J=7 Hz), 4.43 (1H, t, J=6 Hz), 7.22 (5H, m); MS *m/z (%)* 240 (M+, 0.7), 238 (2), 149 (100).

Ethyl 2-Fluorododecanoate (25). Colorless oil; IR (neat) 1765, 1740 (CO) cm⁻¹; ¹H NMR 8 0.88 (3H, t, J=7 Hz), 1.0-2.1 (18H, m), 1.31 (3H, t, J=7 Hz), 4.26 (2H, q, J=7 Hz), 4.87 (1H, dt, J=50, 6 Hz); MS m/z (%) 246 (M⁺, 52), 175 (48), 106 (100). Found: m/z 246.1998. Calcd for C₁₄H₂₇FO₂: M, 246.1994.

Ethyl 2-Fluoro-3-phenylpropionate (26). Colorless oil; IR (neat) 1760, 1745 (CO) cm⁻¹; ¹H NMR δ 1.22 (3H, dt, J=7, 4 Hz), 3.32 (2H, m), 4.20 (2H, dq, J=7, 2 Hz), 5.07 (lH, ddd, J=50, 7, 4 Hz), 7.24 (5H, m); MS m/z (%) 196 (M+, 5), 176 (96), 148 (37), 131 (100). Found: m/z 196.0883. Calcd for C₁₁H₁₃FO₂: M, 196.0898.

Ethyl 2-Chloro-2-(1-hydroxycyclohexyl)dodecanoate (29a). A solution of **14a** (76 mg; 0.19 mmol) in 2 ml of THF was added dropwise with stirring to a solution of EtMgBr (0.23 mmol) in 2 ml of THF at -78 "C under Ar atmosphere. The reaction mixture was stirred for 10 min, then cyclohexanone (0.28 mmol) was added to the mixture. The reaction mixture was stirred for 20 min and quenched with sat. aq. NH4Cl. The whole was extracted with AcOEt and the organic layer was washed with sat. aq. NH4Cl. The product was purified by silica gel column chromatography to afford **29a** (55 mg; 80%) as a colorless oil. IR (neat) 3530 $\overline{O(H)}$, 1755, 1735 (CO) cm⁻¹; ¹H NMR δ 0.88 (3H, t, J=7 Hz), 1.0-2.8 (28H, m), 1.32 (3H, t, J=7 Hz), 4.25 (2H, q, J=7 Hz); MS *m/z (%)* 360 (M+, 0.3), 325 (24), 262 (100). Found: *m/z* 360.2421. Calcd for $C_{20}H_{37}ClO_3$: M, 360.2428.

Isobutyl 2-Chloro-2-(1-hydroxy-3-phenylpropyl)dodecanoate (29b). Colorless oil; IR (neat) 3510 (OH), 1765, 1730 (CO) cm-t; tH NMR 6 0.88 (3H, t, J=7 Hz), 0.91 (6H, d, J=7 Hz), 1.1-2.2 (23H, m), 2.5-3.1 (2H, m), 3.8-4.0 (2H, m), 7.28 (5H, m); MS *m/z (%)* 424 (M+, 0.7) 406 (0.7), 371 (lo), 91 (100). Found: m/z 424.2744. Calcd for C₂₅H₄₁ClO₃: M, 424.2742.

N-[2-Chloro-2-(l-hydroxycyclohexyl)pentanoyl]piperidine (30a). Colorless amorphous; IR (KBr) 3480 (OH), 1615 (CO) cm⁻¹; ¹H NMR δ 0.92 (3H, t, J=7 Hz), 1.1-2.6 (20H, m), 3.71 (4H, m); MS *m/z* (%) 301 (M+, 0.4), 266 (81), 248 (32), 203 (88) 174 (86), 168 (100). Found: m/z 301.1808. Calcd for $C_{16}H_{28}CINO_{2}$: M, 301.1807.

N-[2-Chloro-2-(hydroxy-3-methoxyphenylmethyl)pentanoyllpiperidine (30b). Colorless oil; IR (neat) 3450 (OH), 1615 (CO) cm⁻¹; ¹H NMR δ 0.86 (3H, t, J=7 Hz), 1.3-2.3 (10H, m), 3.64 (4H, m), 3.79 (3H, s), 5.20 (HI, s). 6.7-7.3 (4H, m); MS m/z (96) 339 (M+, OS), 304 (30), 274 (19), 203 (48), 174 (65), 168 (100) . Found: m/z 339.1603. Calcd for C₁₈H₂₆ClNO₃: M, 339.1600.

N-[2-Chloro-2-(hydroxybenzyl)pentanoyl]piperidine (30c). Colorless oil; IR (neat) 3450 (OH), 1615 (CO) cm-t; tH NMR 6 0.90 (3H, t, J=7 Hz). 1.1-2.4 (lOH, m), 3.3-3.8 (4H, m), 5.37 (lH, s), 7.0-7.6 (5H, m); MS m/z (%) 301 **(M+. trace), 274 (13), 244** (ll), 203 (57), 174 (97), 168 (100). Found: *m/z* 309.1490. Calcd for C₁₇H₂₄ClNO₂: M, 309.1494.

N-Benzyl-2-chloro-2-(l-hydroxycyclohexyl)pentanamide (30d). Colorless oil; IR (neat) 3320 (OH), 1665 (CO) cm-l; lH NMR 6 0.94 (3H, t, 5=7 Hz), 1.1-2.5 (14H, m), 4.44 (2H, d, 5=6 Hz), 7.28 (5H, m); MS m/z (%) 225 ([M-C₆H₁₀O]⁺, 11), 190 (45), 91 (100).

N-Benzyl-2-chloro-2-(hydroxybenzyl)pentanamide (30e). Colorless oil; IR (neat) 3320 (OH), 1640 (CO) cm-t; tH NMR 6 0.87 (3H, t, 5=7 Hz), 1.0-2.4 (4H. m), 4.39 (lH, s), 4.50 (lH, d, J=8 Hz), 4.62 $(1H, d, J=14 Hz)$, 7.0-7.8 $(10H, m)$.

N-Benzyl-2-chloro-2-(l-hydroxy-3-phenylpropyl)pentanamide (3Of). Colorless oil; IR (neat) 3300 (OH), 1630 (CO) cm-t; tH NMR 6 1.05 (3H, t, 5=7 Hz), 1.5-1.9 (4H, m), 2.0-2.4 (2H, m), 2.5-3.0 (2H, m), 4.44 (2H, t, J=6 Hz), 7.0-7.4 (10H, m).

2-Chloro-2-(l-hydroxycyclohexyl)pentanamide (3Og). Colorless oil; IR (neat) 3350 (OH), 1660 (CO) cm⁻¹; ¹H NMR 8 0.95 (3H, t, J=7 Hz), 1.1-2.7 (14H, m), 6.25, 6.96 (each 1H, bs); MS m/z (%) 233 (M⁺, 0.1), 198 (70), 135 (96), 106 (100). Found: m/z 233.1197. Calcd for C₁₁H₂₀ClNO₂: M, 233.1181.

Epoxy Amide (31a). Potassium ferr-butoxide (33 mg; 0.29 mmol) was added to a solution of **30a** (60 mg; 0.2 mmol) in 2.6 ml of r-BuOH and the reaction mixture was stirred at room temperature for 1.2 h. The reaction was quenched by adding powdered NH₄Cl, then the solution was filtered. The filtrate was diluted with AcOEt and the solution was washed with sat. aq. NH₄Cl, dried and evaporated. The product was purified by silica gel column chromatography to afford 44 mg (84%) of 31a as a colorless oil. IR (neat) 1640 (CO) cm⁻¹; *H NMR 6 0.94 (3H, t, J=6 Hz), 1.1-2.3 (2OH, m), 3.0-4.0 (4H, m); MS *m/z (%)* 265 (M+, 63), 236 (75), 222 (18), 111 (77), 84 (100). Found: m/z 265.2034. Calcd for C₁₆H₂₇NO₂: M, 265.2039.

Epoxy Amide (31b). Colorless oil; IR (neat) 1640 (CO) cm⁻¹; ¹H NMR δ 0.81 (3H, t, J=7 Hz), 1.2-1.8 **(IOH,** m), **3.4-3.7 (4H,** m), **3.80 (4H, s), 4.13** (lH, s), 6.7-7.4 (4H, m); MS m/z (%) 303 (M+, 75) 274 (16), 201 (71), 111 (100). Found: m/z 303.1824. Calcd for C₁₈H₂₅NO₃: M, 303.1832.

Epoxy Amide (31c). Colorless oil; IR (neat) 1640 (CO) cm⁻¹; ¹H NMR δ 0.80 (3H, t, J=7 Hz), 1.2-1.8 (lOH, m), 3.4-3.7 (4H, m), 4.16 (lH, s), 7.31 (5H, s); MS *m/z (%)* 273 (M+, 78), 244 (20). 174 (60), 111 (100). Found: *m/z* 273.1734. Calcd for C17H23N02: M, 273.1728.

Epoxy Carboxylic Acid (32a). A solution of **15** (134 mg; 0.54 mmol) in 2 ml of THF was added dropwise with stirring to a solution of EtMgBr (1.19 mmol) in 2 ml of THF at -78 °C under N₂ atmosphere. The reaction mixture was stirred at -78 "C for 10 min, then benzaldehyde (1.36 mmol) was added. The reaction was quenched with sat. aq. NH $_{4}$ CI and excess 10% NaOH was added. The water layer was separated and acidified with 10% HCl. The solution was extracted with ether and the organic layer was dried and evaporated. The product was purified by silica gel column chromatography to afford 66 mg (68%) of **32a** as light yellow oil. IR (neat) 1730 (CO) cm⁻¹; ¹H NMR δ 1.34 (3H, s), 4.35 (1H, s). Further characterization was carried out with its methyl ester (by diazomethane). Colorless oil; IR (neat) 1745 (CO) cm⁻¹; ¹H NMR 8 1.31 (3H, s), 3.81 (3H, s), 4.31 (lH, s), 7.30 (5H, m); MS m/z (%) 192 (M+, 0.3), 121 (100). Found: m/z 192.0782. Calcd for $C_{11}H_{12}O_3$: M, 192.0785.

Epoxy **Carboxylic Acid** (32b). Colorless oil (about 1:l diastereomeric mixture); IR (neat) 1720 (CO) cm⁻¹; ¹H NMR δ 1.42, 1.56 (each 1.5H, s, CH₃). Methyl ester: Colorless oil; IR (neat) 1750 (CO) cm⁻¹; ¹H NMR 6 1.41, 1.52 (each 1.5H, s), 1.7-2.0 (2H, m), 2.6-2.9 (2H, m), 2.94, 3.22 (each 0.5H, t, J=6 Hz), 3.68, 3.72 (each 1.5H, s), 7.0-7.4 (5H, m); MS m/z (%) 220 (M+, 0.2), 202 (3). 161 (14), 117 (85). 91 (100). Found: m/z 220.1105. Calcd for C₁₃H₁₆O₃: M, 220.1099.

Epoxy Carboxylic Acid (32c). Colorless oil; IR (neat) 1740 (CO) cm⁻¹; ¹H NMR 8 1.24, 1.70 (each 3H, s). Methyl ester: Colorless oil; IR (neat) 1755. 1735 (CO) cm- t; tH NMR 6 1.19, 1.61, 3.82 (each 3H. s), 7.30 (5H, m); MS m/z (%) 206 (M+, 1), 205 (3), 174 (5), 146 (67), 135 (100). Found: m/z 206.0936. Calcd for C₁₂H₁₄O₃: M, 206.0942.

Epoxy Carboxylic Acid (32d). Colorless oil; IR (neat) 1730 (CO) cm-t; 'H NMR 6 1.43 (3H, s), 7.1- 7.5 (10H, m); MS m/z (%) 254 (M⁺, 0.9), 253 (1.5), 210 (55), 167 (100).

(Z)-N-(2-Chloro-2-pentenoyl)piperidine (4a). A solution of **13a** (82 mg; 0.24 mmol) in 5 ml of toluene was refluxed for 10 min. The toluene was evaporated and the residue was chromatographed on silica gel to afford 37 mg (77%) of **4a as** a colorless oil. IR (neat) 1640 (CO) cm-t; tH NMR 6 1.05 (3H. t, J=7 Hz), 1.4-1.8 (6H, m), 2.28 (2H, quintet, J=7 Hz), 3.3-3.6 (4H, m), 5.94 (1H, t, J=7 Hz); MS m/z (%) 201 (M⁺, 25), 174 (32), 172 (100). Found: m/z 201.0921. Calcd for $C_{10}H_{16}CINO: M$, 201.0920

(Z)-Isobutyl 2-Chloro-2-dodecenoate (4b). Colorless oil; IR (neat) 1725 (CO) cm⁻¹; ¹H NMR 8 0.88 $(3H, t, J=7 Hz)$, 0.96 (6H, d, J=7 Hz), 1.1-1.6 (14H, m), 2.01 (1H, m), 2.35 (2H, q, J=7 Hz), 3.97 (2H, d, J=7 Hz), 7.04 (lH, t, J=7 Hz); MS m/z (%) 288 (M+, l), 273 (0.5), 232 (8), 215 (6), 57 (100). Found: m/z 288.1856. Calcd for C₁₆H₂₉ClO₂: M, 288.1855.

(Z)-Ethyl 2-Fluoro-3-phenylpropenoate (4~). Colorless oil; IR (neat) 1740 (CC) cm-t; tH NMR 6 1.38 (3H, t, J=7 Hz), 4.34 (2H, q, J=7 Hz), 6.90 (lH, d, J=35 Hz), 7.2-7.7 (5H, m); MS m/z (%) 194 (M+, 100), 165 (38), 149 (40). Found: m/z 194.0735. Calcd for C₁₁H₁₁FO₂: M, 194.0742.

(Z)-Ethyl 2-Fluoro-2-dodecenoate (4d). Colorless oil; IR (neat) 1735 (CO) cm-t; tH NMR 6 0.88 (3H, t, J=7 Hz), 1.1-1.6 (14H, m), 1.32 (3H, t, J=7 Hz), 2.0-2.4 (2H, m), 4.27 (2H, q. J=7 Hz), 6.09 (lH, dt, J=34, 7 Hz); MS *m/z (8)* **244** (M+, l), **224** (l), 199 (3), 43 (100). Found: *m/z* 244.1837. Calcd for $C_{14}H_{25}FO_{2}$: M, 244.1837.

2-Chloro-3-phenyl-2-(p-tolylsulfinyl)propanal @a). A solution of 1-chloro-2-phenylethyl p-tolyl sulfoxide (578 mg; 2.07 mmol) in 5 ml of dry THF was added to a solution of LDA (3.11 mmol) in 10 ml of THF at -60 \degree C with stirring. The reaction mixture was stirred at -60 \degree C for 20 min. Methyl formate (0.39 ml; 6.22 mmol) was added to the solution and the reaction mixture was stirred at -60° C for 20 min. The reaction was quenched with sat. aq. NH₄Cl and the whole was extracted with AcOEt. The organic layer was washed with sat. aq. NH₄Cl, dried over MgSO₄, and evaporated. The product was purified by silica gel column chromatography to give 8a (462 mg; 73%) as a colorless oil (about 4:1 diastereomeric mixture). IR (neat) 1730 (CO) , 1090 , 1075 (SO) cm⁻¹; ¹H NMR 8 2.40 (3H, s), 3.60, 3.72 (each 1H, d, J=14 Hz), 7.1-8.0 (9H, m), 8.92 (0.8H, s), 9.47 (0.2H, s); MS m/z (%) 306 (M+, 2), 278 (4) 262 (8) 246 (lo), 214 (22), 139 (100). Found: m/z 306.0477. Calcd for C₁₆H₁₅ClO₂S: M, 306.0480.

2-Chloro-2-(p-tolylsulfinyl)dodecanal (8b). Colorless oil (about 3:1 diastereomeric mixture); IR (neat) 1730 (CO), 1095, 1070 (SO) cm⁻¹; ¹H NMR δ 0.88 (3H, t, J=7 Hz), 1.0-1.8 (18H, m), 2.42 (3H, s), 7.2-7.7 (4H, m), 8.97 (0.75H, s), 9.34 (0.25H, s); MS m/z (%) 326 ([M-HCHO]+, 0.07), 278 (4), 246 (53) 123 (100).

2-Fluoro-3-phenyl-2-(phenylsulfinyl)propanal (8~). Colorless oil; IR (neat) 1740 (CO), 1090, 1055 (SO) cm-t; tH NMR 6 3.59 (2H, d, J=30 Hz), 7.1-7.8 (lOH, m), 9.08 (lH, d, J=6 Hz); MS *m/z (8)* 276 $(M⁺, 20), 234 (3), 150 (95), 149 (100).$ Found: m/z 276.0613. Calcd for C₁₅H₁₃FO₂S: M, 276.0619.

2-Fluoro-2-(phenylsulfinyl)dodecanal (8d). Colorless oil (about 1:l diastereomeric mixture); IR (neat) 1730 (CO), 1090, 1070 (SO) cm⁻¹; ¹H NMR 8 0.87 (3H, t, J=7 Hz), 1.0-2.5 (18H, m), 7.2-7.7 (5H, m), 9.11 (0.5H, d, J=4 Hz), 9.23 (05H, d, J=7 Hz); MS m/z (%) 326 (M+, 4), 234 (24) 186 (40). 126 (97). 125 (100). Found: m/z 326.1718. Calcd for C₁₈H₂₇FO₂S: M, 326.1714.

2-Chloro-3-phenylpropanal (9a). Colorless oil; IR (neat) 1740 (CO) cm⁻¹; ¹H NMR δ 3.07 (1H, dd, J=l6, 8 Hz), 3.35 (lH, dd, J=15, 6 Hz), 4.37 (lH, m), 7.1-7.7 (5H, m), 9.50 (lH, d, J=3 Hz); MS *m/z (%)* 168 (M+, lo), 133 (100). 91 (76). Found: *m/z* 168.0341. Calcd for C9H9CIO: M, 168.0341.

2-Chlorododecanal (9b). Colorless oil; IR (neat) 1740 (CO) cm⁻¹; ¹H NMR 8 0.97 (3H, t, J=7 Hz), 1.0-1.7 (16H, m), 1.7-2.1 (2H, m), 4.14 (lH, m), 9.45 (lH, d, J=2 Hz); MS m/z (8) 218 (M+. 6), 165 (8), 140 (38), 41 (100). Found: m/z 218.1441. Calcd for C₁₂H₂₃ClO: M, 218.1436.

 (Z) -2-Chloro-3-phenylpropenal (10a). Colorless oil; IR (neat) 1700 (CO), 1620 (C=C) cm⁻¹; ¹H NMR 6 7.4-7.6 (3H, m), 7.53 (lH, s), 7.8-8.1 (2H, m), 9.48 (IH, s); MS *m/z (8)* 166 (M+, lOO), 138 (13). 103 (55). Found: m/z 166.0182. Calcd for CgH7Cl0: M, 166.0184.

 (Z) -2-Chloro-2-dodecenal (10b). Colorless oil; IR (neat) 1705 (CO), 1630 (C=C) cm⁻¹; ¹H NMR δ 0.88 (3H, t, J=7 Hz), 1.0-1.7 (14H, m), 2.52 (2H, q, J=7 Hz), 6.87 (lH, t, J=7 Hz), 9.33 (lH, s); MS *m/z* $(\%)$ 216 (M⁺, 2), 181 (6), 172 (12), 129 (26), 41 (100). Found: m/z 216.1270. Calcd for C₁₂H₂₁ClO: M, 216.1279.

 (Z) -2-Fluoro-3-phenylpropenal $(10c)$. Colorless oil; IR (neat) 1695 (CO), 1645 (C=C) cm⁻¹; ¹H NMR 6 6.61 (lH, d, J=34 Hz), 7.2-7.8 (5H, m), 9.33 (lH, d, J=l7 Hz); MS *m/z (%)* 150 (M+, lOO), 149 (98), 122 (25). Found: *m/z* 150.047 1. Calcd for QH7FO: M, 150.0480.

(Z)-2-Fluoro-2-dodecenal (10d). Colorless oil; IR (neat) 1710 (CO), 1670 (C=C) cm-t; 1H NMR 6 0.89 (3H, t, J=7 Hz), 1.1-1.8 (14H, m), 2.1-2.5 (2H, m), 5.94 (lH, dt, J=32, 8 Hz), 9.19 (lH, d, J=l8 Hz); MS m/z (%) 200 (M⁺, 1.6), 169 (3), 95 (45), 88 (100). Found: m/z 200.1566. Calcd for C₁₂H₂₁FO: M, 200.1575.

Acknowledgments. This study was supported by a Grant-in-Aid for Scientific Research No. 05671771 from the Ministry of Education, Science and Culture, which is gratefully acknowledged. We are grateful to Noriko Sawabe and Fukiko Hasegawa of this laboratory for NMR and MS measurements.

REFERENCES AND NOTES

- 1. A. Cox, "Comprehensive Organic Chemistry" I. 0. Sutherland Ed., Vol 2, pp 719-737, Pergamon Press, Oxford (1979).
- 2. N. D. Kimpe and R. Verhe, "The Chemistry of α -Haloketone, α -Haloaldehydrs and α -Haloimines" S. Patai and Z. Rappoport Ed., John Wiley and Sons, Chichester (1988).
- 3. T. Satoh, K. Onda, N. Itoh, and K. Yamakawa, *Tetrahedron Left., 32,5599 (1991);* T. Satoh, N. Itoh, K. Onda, Y. Kitoh, and K. Yamakawa, *Bull. Chem. Sot. Jpn., 68, 2800 (1992).*
- 4. A part of this study was reported as a communication: T. Satoh, Y. Kitoh, K. Onda, and K. Yamakawa, *Tetrahedron Letf., 34,233l* (1993).
- 5. T. Satoh, T. Oohara, Y. Ueda, and K. Yamakawa, *J. Org. Chem., 54, 3130 (1989).*
- 6. *S.* F. Wnuk and M. J. Robins, *J. Org. Chem., 55,4757 (1990);* M. J. Robins and S. F. Wnuk, *J. Org. Chem., 58, 3800* (1993).
- 7. T. Mukaiyama, Org. Reacct., 28,203 (1982); C. H. Heathcock, "Comprehensive Carbanion Chemistry" Ed. by E. Buncel and T. Durst, Elsevir, Amsterdam: Part B, p. 177 (1984); T. Ishihara, *J. Syn. Org. Chem. Jpn., 50, 347 (1992).*
- 8. T. Satoh, Y. Kaneko, and K. Yamakawa, *Tetrahedron Len., 27, 2379 (1986); N.* Furukawa, T. Shibutani, K. Matsumura, H. Fujihara, and S. Oae, *Tetrahedron Letr., 27,3899* (1986); T. Satoh, Y. Kaneko, and K. Yamakawa, *Bull. Chem. Sot. Jpn., 59, 2463 (1986); N.* Furukawa, T. Shibutani, and H. Fujihara, *Terruhedron Left., 28,2727* (1987); T. Satoh, T. Oohara, Y. Ueda, and K. Yamakawa, *Tetrahedron Len.,*

29,313 (1988); T. Satoh, T. Oohara, and K. Yamakawa, *Tetrahedron Len.,* 29,285l (1988); T. Satoh, T. Oohara, and K. Yamakawa, *Tetrahedron Lett.,* 29,4093 (1988); T. Satoh, T. Oohara. Y. Ueda, and K. Yamakawa, *J. Org.* Chem., 54, 3130 (1989); T. Satoh, T. Sato, T. Oohara, and K. Yamakawa. *J. Org.* Chem., 54,3973 (1989); P. G. Theobald and W. H. Okamura, *J. Org.* Chem., 55,741 (1990); S. Ogawa and N. Furukawa, *J. Org.* Chem., 56,5723 (1991); N. Furukawa, S. Ogawa, K. Matsumura, and H. Fujihara, *J. Org. Chem., 56.6341* (1991); S. Oae, "Reviews on Heteroatom Chemistry" Ed. by S. Oae, Vol. 4, p 194, MYU, Tokyo (1991); H. Uno, K. Sakamoto, F. Semba, and H. Suzuki, Bull. *Chem. Sot. Jpn.,* 65,210 (1992); H. Uno, K. Sakamoto, and H. Suzuki, *Bull. Chem. Sot. Jpn., 65,218* (1992); C. Cardellicchio, V. Fiandanse, and F. Naso, *J. Org. Chem.,* 57, 1718 (1992); C. Cardellicchio, V. Fiandanse, F. Naso, and A. Scilimati Tetrahedron Lett., 33, 5121 (1992); T. Satoh, Y. Hayashi, and K. Yamakawa, *Bull. Chem. Sot. Jpn., 66, 1866* (1993).

- 9. Some papers concerning the enolates of carboxylic acid derivatives have been published: M. W. Rathke, *Org. React., 22,423 (1975); N.* Kunieda, J. Nokami, and M. Kinoshita, *Tetrahedron Len., 1974,3997;* J. Nokami, N. Kunieda, and M. Kinoshita, *Tetrahedron Lett., 1975,* 2179; J. Nokami, H. Ohtsuki, Y. Sakamoto, M. Mitsuoka, and N. Kunieda, Chem. Lett., 1992, 1647.
- 10. M. S. Newman and B. J. Magerlein, *Org. React., 5,413* (1949); T. Rosen "Comprehensive Organic Synthesis" B. M. Trost, Ed., Vol. 2, pp 409-439, Pergamon Press, Oxford (1991).
- 11. a) B. M. Trost, T. N. Salzmann, and K. Hiroi, *J. Am. Chem. Sot., 98,4887* (1976); b) B. M. Trost, *Chem. Rev., 78, 363* (1978).
- 12. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, "Spectroscopic Identification of Organic Compounds" 4th Ed., p 227 and 236, John Wiley and Sons, New York (1981).
- 13. D. S. Tarbell, J. W. Wilson, and P. E. Fanta, Org. Syn., Coll. Vol. 3, 267 (1955).

(Received in Japan 26 January 1994; *accepted 23 February 1994)*